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Abstract— The static postbuckling of simply-supported single and multilayered composite double-
curved shallow panels subjected to a system of in-plane compressive edge loads is studied. The
effects caused by transverse shear deformation, lamination, the character of in-plune boundary
conditions and transverse normal stress. are considered and a series of pertinent conclusions are
outlined. Comparisons are made of the obtained results with their classical counterparts and
conclusions related to their range of applicability are presented. Morcover, by incorporating the
initial geometric imperfections, their influence on the load carrying capacity of curved composite
pancls is discussed and the peculiarities of their effect as compired to the case of flat panels are
emphasized.

INTRODUCTION

Laminated composite structures arc being increasingly used in the acronautical and aero-
space constructions. The employment in their construction of the new composite material
systems exhibiting exotic propertics, such as high anisotropy ratios, requires, for a more
reliable prediction of their response, the adoption of refined structural models which are
obtained by discarding the classical Love-Kirchhoff assumptions. Due to the importance
of various shell structures as the load carrying members in aircraft, spacecraft, naval
constructions, etc., the study of their stability behavior has received a great deal of attention.
The large lists of references in the specialized monographs by Vol'mir (1967), Budiansky
(1974), Brush and Almroth (1973), Esslinger and Geier (1975), Grigoliuk and Kabanov
(1978), Bushnell (1985) and Leissa (1985) as well as in the survey papers by Hutchinson
and Koiter (1970), Bushnell (1981), Arbocz (1981), Singer (1982), Citerley (1982) and
Simitscs (1986) fully attest this statement.

One of the important problems deserving special attention is the study of the post-
buckling of laminated composite double-curved panels under compressive edge loads. The
well-known postbuckling strength exhibited by metallic panels has permitted the design of
conventional aircraft structural elements to operate within the postbuckling range.
Evidently, a better understanding of their postbuckling behavior constitutes an essential
requircment toward a rational employment of this strength.

However, in contrast to their metallic counterparts, the panels composed of advanced
composite materials exhibit high flexibilitics in transverse shear and, as a result, the trans-
verse shear effects have to be incorporated. In addition, both the composite structures and
the traditional metallic oncs may exhibit some unavoidable geometric imperfections. Their
presence could result in significant differences and sometimes even in drastic changes in
their postbuckling behavior as compared to their perfect counterparts.

t Dedicated as a modest homage to the memory of the distinguished scientist, Dr Manuel Stein. This
represents an updated and amended version of the papers presented at the Winter Annual Meeting of The
American Socicty of Mcchanical Engincers, Dallas, Texas, November 1990 and Pan American Congress of
Applied Mechanics, Chile, January 1991,
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The present paper addresses the problem of the compressive postbuckling of doubly-
curved homogencous laminated composite panels. The roles played by transverse shear
deformation. transverse normal stress, the character of in-plane boundary conditions is
discussed and a series of conclusions related to their effects on the associated buckling and
limit loads and of their sensitivity to initial geometric imperfections is outlined. In addition
to the influence of the above-mentioned effects. the one related to the sign of the Gaussian
curvature of the mid-surface of curved panels is also investigated.

Throughout the paper, comparisons of the results obtained within the framework of
a higher order theory with their first order and classical counterparts are performed and
pertinent conclusions related to their range of applicability are outlined.

It should be mentioned that research on postbuckling behavior of shear deformable
composite curved panels appears to be somewhat scarce. a fact which could clearly be inferred
from the monographs by Esslinger and Geier (1975), Leissa (1985) and Bushnell (1985)
and the survey papers by Citerley (1982) and Simitses (1986).

As a preparatory step toward the study of this problem. a short derivation of the
governing equations of a geometrically nonlinear theory of shear-deformable composite
curved panels will be presented. The theory is developed within the Lagrangian description
and retains, in the spirit of von Karman’s small strains and moderately small rotations
concept, the nonlinearities asssociated with the transverse displacement, only.

This paper represents a continuation and extension of a series of results previously
obtained by Librescu (1975), Librescu and Stein (1988, 1990a.b) and Librescu and Chang
(1990).

GEOMETRICALLY NONLINEAR THEORY OF SHEAR-DEFORMABLE LAMINATED
COMPOSITE CURVED PANELS — BASIC ASSUMPTIONS

Consider the case of laminated composite double-curved shallow pancls of uniform
thickness A, symmetrically laminated with 2m+ 1 (m = 1, 2,...) clastic anisotropic layers.
It is supposed that the layers are in perfect bond, implying that no slipping may occur
between two contiguous layers,

The points in the three-dimensional space of the pancel are referred to a set of curvilinear
normal system of coordinales, x‘, where x* (2 = 1, 2) denote the in-plane coordinates, while
x* = 0 defines the reference surface (coinciding with the mid-surface of the mid-layer). The
components of the metric tensor of the undeformed reference surface (denoted henceforth
as ¢) are:

a,,«,:&,‘&;;; a,;:?t,‘&;:(}: (133‘—'-“2:'3’6'3:1,

@=0; ¢P=a"a'=1, H

where &' and &, denote the contravariant and covariant base vectors of a, respectively. The
spatial metric tensor components g,; of the undeformed shell space are connected with their
two-dimensional counterparts «¢,, by

A, . — K . — ¥y
Gap = WMty g3 =g =0 g3y =g" =1, 2

up =05 —x’b3,

04 and by denoting the Kronecker delta and the mixed curvature tensor, respectively.

In order to reduce the three-dimensional elasticity problem to an equivalent two-
dimensional one, the equations connecting the covariant derivatives of space tensors with
their surface counterparts are used. Such relations, not restricted to the case of shallow
surfaces, are:
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Tap = wo(Ty=byTy): Tyy=wT.s: Tyu=T,+6T,; Ty, = Ty, (3

For more details concerning their deduction, the reader is referred, for example. to Naghdi
(1963) and Librescu (1975).

Here, partial differential is denoted by a comma ( ) ; = d/x,, while ( )}j;and ( )|, stand
for the covariant differentiations with respect to the space and surface metrics, respectively,
while the shifted components are identified by an upper bar. In the above relationships (as
well as in the following developments), Einstein's summation convention is implied for the
repated indices, where Latin indices range from 1 to 3 while the Greek indices range from
ltw?2

The conditions of shallowness of a shell are discussed in the monographs by Green
and Zerna (1968) and Gol'denveizer (1976). Denoting by Z(= Z(x”)) the amount of
deviation of the shell reference surface from a plane I1 (measured normal to the plane),
according to these conditions, Z is assumed to be small when compared with a maximum
length of an edge of the shell or with the minimum radius of curvature of ¢. For this case,
the assumption

max Z, « 1, 4

gives rise to the result that the metric tensors associated with the system of coordinates on
¢ and with its projection on the plane IT are the same and, in addition, that the curvature
tensor of the reference surface behaves as a constant in the differentiation operation.

From this result it may be inferred that if the projected coordinate curves on T1
constitute a Cartesian orthogonal net, then the original ones on ¢ arc also to be, on the
basis of (4}, a Cartesian orthogonal net. Duce to the equivalence of the two metrics, it may
also be concluded that the surface covariant differentiations may be done with respect to
the metric associated with the plane [T and thus it is possible to change the order of the
covariant diflerentiations (since the Ricmann -Christoffel tensor associated with the plane
vanishes).

Morcover, consistent with the shallow shell theory (8ST) we may appropriately assume
that

Hy = 4, ®

where y5, defined by eqn (2), plays the role of shifter in the space of normal coordinates
(Naghdi, 1963 ; Librescu, 1975). From (5) it may also be concluded that in this case

w= gl = (gla)'? = 1, (6)

where g = det (g} and ¢ = det (a,,).

DISPLACEMENT REPRESENTATION AND STRAIN MEASURES

The theory of shear-deformable shallow curved panels will be developed by using the
following representation of the shifted displacement components (Reddy and Liu, 1987;
Librescu er al., 1989 ; Librescu and Stein, 1988, 1990b : Dennis and Palazotto, 1990 ; Simitses
and Anastasiadis, 1991):

V,(.Ym,.\'}) = U, +.\‘3lll,+(.\73)2).,+(.\‘3)]C,. VJ("J“’ xJ) = Uy, (7)

where

; = “:(-Yw); '/Ix = 'l’:(-\‘w): ;-z = ("JU)’ C: = c:(xw)'

Based on the representation (7). the exact fulfillment of tangential static conditions on the
bounding surfaces x> = +4#/2 (i.e. [s**]*;2 = 0 and [x*s*’)V},; = 0), yields
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4
i,=0 and [, = — ;'h'f(ll“,-{blj/,). (3)

Although a cubic variation of in-plane displacement components through the thickness
was postulated, in light of eqn (8) the displacement field contains the same unknown
functions as the first order transverse shear deformation theory (FSDT). i.e. u;, u, and ¢,.
The underlined terms in eqn (7) have the character of corrective terms allowing one to
fulfill the conditions on x, = +A72. In the following developments the terms generated by
these higher order terms are identified by the tracer J,,.

We will also assume the existence of an initial out-of-plane, stress-free geometrical
imperfection i, = 17;(x”). By convention. the transverse deflection is measured from the
imperfect surface, in the positive, inward direction.

In conjunction with the Lagrangian description, and in the spirit of small strains and
moderately small rotations approximation. the strain—displacement relationship results as:

2(;‘/ —- V'.] + l/ s [‘ IV.‘:!/' (9)

This expression corresponds to the partially geometrically nonlinear theory and constitutes
the kinematical basis of the classical von Karman theory of plates and shallow shells as
well as of their refined counterparts (Librescu, 1975). By virtue of eqns (7)-(9) and taking
into account the effect of geometric imperfection, the non-zero componeats of the strain
tensor may be expressed as:

LN A RS . AR
c’l” =£'xl+" "1/‘+(-\ ) Gafis €y = *‘1}+(-\: ) Ay, (IO)

21:,” = ll,m + U”l, —2/71”“3 +“3_,ll 3B +"3~,l73.ﬁ +l;]‘,ll]./;, 2'\'1” = l/l,m +¢m,.

o4
?-Sw = —0Jy 3/1‘3 (2Unzﬂ+'//xm+¢/!u)»
.4
281] = !/jx +“3.1 +b‘;ll‘,, 2;'13 = —-()II i}ll ('Px +”3.1 +h‘;“p)- (l I)

It should be mentioned that: (1) the strain components associated with the FSDT may be
obtained from eqns (10) by considering therein J,; and 4, ; as zero quantities (or equivalently
by considering d,, = 0), while (i1) for

l//, - _(ulx +bl;llp), (12)

the strain measures (1) reduce to the ones associated with the classical theory (based on
the Love-Kirchhoff hypothesis).

In the previous (and forthcoming) equations the covariant differentiation is performed
with respect to the metric at T1.

CONSTITUTIVE EQUATIONS

The three-dimensional constitutive equations associated with an elastic monoclinic
material may be expressed as (Librescu, 1967, 1975):

1533
/) rxfiu 5 3 3 RI7A]
s!l — E!/uul.,mp +(>‘ Ej—m SJ . s* = zEx 1) . (]3)

where
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- E:ﬂ33E33wp
Eotor = E — = (14)

In (13) and (14) EY™ and E*** denote the tensors of elastic and modified elastic moduli,
respectively ; 8, is a tracer identifying the contribution of 5** in the constitutive equations
(and later in the governing equations), while s” denotes the second Piola-KirchhofT stress
tensor. In order to express s*° in terms of the basic unknowns, the third equation of motion
of the nonlinear theory of three-dimensional elasticity, namely the one associated with the
index i = 3in

[s/" (8 + V"

Al =0. (15)

has to be used. Employment in that equation of the relationships connecting the covariant
derivatives of space tensor with their surface counterparts [see eqns (3) and also the ones
in Librescu (1975) and Naghdi (1963)]. followed by its integration over the segment [0, x*),
yields

st = —'[ {7+ 6,5 (35 — Bhuy) + 57Uy, + (sPuy )], ) dx. (16)
0

The employment of eqns (13) in conjunction with eqns (10), (11) and (14) in the
equations expressing the stress-resultants L, Q** and stress-couples M, the two-dimen-
sional form of constitutive equations is obtained. In terms of the basic unknowns u,, i,
and u, these equations are:

i L e o o
L” -2 [ *hop (“mlp + umm — thu“ 3 + u.‘.lu“ I + u],m“ 3p +u 3l ].0)

4
+ 7{3 bA me” (“ 3wl I +u J.w“J.p + u).ﬂu .\.w)-

4
I;E Pﬂml)(ww'*' ul.w+bﬂ:uy);

Q:] = <R:}ml_o’"

2fhup
S U3\wp

l N 2 xfpe)
MY = (2 Hor — 3,y e s ") Wt V) — e

. . 4
-0, | e On 373 Nbew (lllmm + Uy, + hf’uua;,,) - 5/4 yis (“A/n + un/l)' 17)
3h

Throughout the paper, an index in angular brackets ) attached to a quantity denotes its
affiliation to the layer of the laminate identified by that index. Excepting Y*#* the expressions
of the remaining rigidy quantitics intervening in eqns(17) can be found in the paper by
Librescu and Stein (1990b). The expression of Y*#4* is displayed in the Appendix.

In order to represent the governing equations in terms of the five unknown displacement
quantitics, five macroscopic equations of equilibrium are nceded. These are derived by
taking the appropriate moments of order zero and one of eqns (14) correspondingtoi = 1,2
and the moment of order zero of the same equations for i = 3.

Upon retaining the nonlinearities associated with the transverse deflection only, the
two-dimensional equations of equilibrium assume the form:

L’ﬂlﬁ = Ov A{mlﬁ—'Q’J = O‘ Lzﬂ(“).l}'{"l}lﬂ)‘:+bplep+Q,3|: +PJ = 0$ (18)

where p; denotes the transversal load. Substitution of stress-resuitants and stress-couples
as expressed by eqns (17) and in (18) results in one of the possible forms of the governing
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equations of geometrically nonlinear shear-deformable anisotropic composite shallow
panels. This form of the governing equations will not be displayed here.

A MIXED FORMULATION OF THE GOVERNING EQUATIONS

In what follows. the governing equations of the geometrically nonlinear theory of
composite curved shallow panels will be reduced to a form which may be viewed as the
generalization of the classical von Karman-Mushtari large deflection theory of shallow
shells to the case of geomerically imperfect shear-deformable laminated composite curved
panels. To this end. the procedure developed in the papers by Librescu and Stein (1988,
19904, b) will be followed.

In short. it reduces to: the conversion of two-dimensional constitutive equations (17)
to the case of transversely-isotropic material layers (the surface of isotropy of the material
of each layer being parallel to o) : the representation of stress resultants L* in terms of the
Airy stress function F(x”) resulting in the identical fulfillment of eqns (18), ; consideration
of the compatability equation

4i B o
MM E i + M ptiie + Myt yeg + Wyt + bagtiyg) =0, (19)

which has to be fullilled, and finally in the representation of ¢* in terms of a potential
function ¢p(= H(1*)) as:

! D B+C M
W= —\VU”¢ﬂ—-StuH?-< Sg-—OAS:>Pﬂ’~("ﬂ’+byﬂ
B+C M . . x
- ( bv: —‘)A-I S:)“”“(.b‘ {F“m[(”.‘ini-*-u !]nl)+hnl]}, . (20)

By paralleling the procedure developed in the paper by Librescu and Stein (19904, b),
the following system of governing equations is obtained :

g ” . .
Du | :f, — TP {b,ﬂ[’p",. F (U gy + tiyap) Flos

s "%y

<B+C oM
- S S

. . B+C M .
)(hm[“,«..,. + F (U +"z|x/:))la} -+ <’“*" -0, "“)I’}Ia =0,

(h+OFIis+ g("}lﬁ"}lﬁ ““3|ﬁ“3]f)+(’73|:lhli —tisfzu307) + (2Hu;,; _bg"slfx)

+2(54c7(113!ﬁ“usl;,+1¢3|$usl£'+t°43l¢!”u;l,+u;l‘n"'t7;l,,+2ﬁs|£uslf.) =0,

C ._
$-ola=0 21

In the preceding equations, (1)}f and (-)|% denote the two-dimensional Laplace and
bihiarmonic operators, respectively, #/ denotes the mean curvature of 6 (2H = bya™
= 1'R,+1/R.). In addition, the expression of rigidity quantitics 8, C, D, M, S and b, ¢,
d can be found in the paper by Librescu and Stein (1990b). Within this system, the equa-
tions incorporate the effects of transverse shear deformation and transverse normal stress,
the geometric nonlinearities as well as the effect of initial geometric imperfections. In
addition, within this formulation, the static conditions on the bounding surfaces of the
panel are fulfilled.

Specialization of the obtained equations for §,, = J,, = 0 and replacement in the rigidity
quantities S and M of G,, by K*G/,, (where K’ denotes a transverse shear correction
factor), results in the first-order transverse shear deformation (FSDT) counterpart of the
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present higher-order shell theory. Further consideration of G7,, — x¢ yields the von Kar-
man-Mushtari equations of large deflection shallow classical shell theory. For the case of
a single layered shell. A, ,, — h/2and X,., (*) = 0.

The linearized counterpart of eqns (21) constitutes a generalized version for shells of
the Reissnerian theory of plates (1985) generalized in a series of works by Librescu (1975)
and Librescu and Reddy (1989).

It should be mentioned that the linear equation (21); (of a Helmholtz-type) defines the
boundary layer effect. Its solution is characterized by a rapid decay when proceeding from
the edges towards the interior of the shell. Although appearing uncoupled in the governing
equations, the unknown function ¢ remains coupled with the other two functions, F and
u, in the equations expressing the boundary conditions (five at each edge).

However, as was shown in the linear case (Pelech, 1975) and within the geometnically
nonlinear theory of composite plates (Librescu and Stein, 1988, 1990a.b). for simply-
supported boundaries. the function ¢ could be rendered decoupled in the boundary con-
ditions to result as

o¢/in =0, (22)

at a boundary whose outward normal to the contour is 7 = né,. Since the governing
equatton for ¢ is homogencous, the solution of eqn (21);, in conjunction with the associated
BCs is identically zero. In such a case, eqn (21); could entirely be discarded.

POSTBUCKLING OF SHALLOW DOUBLY-CURVED PANELS WITH RECTANGULAR
PLANFORM

The postbuckling behavior of simply-supported composite doubly-curved panels with
rectangular planform (/, x£,) on IT will be analyzed, The points of ¢ are referred to a
Cartesian orthogonal system of coordinates assumed to be parallel to the panel edges. We
consider the case when the panel is subjected to a system of uniform in-plane biaxial
compressive edge loads £, and £, and assume that during the postbuckling process no
delamination may occur. For the problem considered here, the terms associated with the
transversatl load p, are discarded.

Depending upon the in-plane behavior at the edges, two cases are considered, namely :

{(2) The edges are simply supported and freely movable (in the in-plane tangential
direction). In addition, the pancl is subjected to biaxial compressive edge loads.

{b) The edges are simply supported. Uniaxial edge loads are acting in the direction of
the x,-coordinate. The edges x = 0, [, are considered freely movable (in the in-plane
direction).

For these cases, by paralleling the procedure developed in Librescu and Stein (1988,
1990b) the BCs could be reduced to:

Case (u)
Atx|:0,[]:
B+C M .
uy=0. L;y=0; D“J,u'*‘(“‘““g.’”“54§>Ln(u3.u+“3,n+bn)=0:
(ﬁ_[ =0 and L”= —[:],

and at x, = 0./,:

B+C M
uy=0: L;; =0; D“s.zz‘*‘(‘*g‘*"‘54E)Lzz(us.zz'{“ﬁs.zﬁ'bzz)=0;

d)_g =0 and Lzz = —'i:g. (23)
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Case (b)
At.r|=0,1|:
B+C M .
uy=0; L,,=0; DuJ.Il+<T_5A§—)Lll(u3.ll+“3.ll+bll)=O:
¢, =0 and LH:“le
andatx,=0,/,:
B+C M
us=0; u;=0; D“J.::‘*‘(—t‘ —04 ‘—)Lzz(“s 22t +b:2) =0
S S
¢‘2=0 and L., =0. (24)

Equations (23) and (24) reveal that the out-of-plane BCs are expressed in terms of u, and
¢ in an uncoupled form. Moreover, eqn (21), considered in conjunction with the associated
BCs (23),9 and (24),, admits the trivial solution ¢ = 0.

This means that for the case of simply-supported boundaries, discarding the boundary-
layer solution dos not constitute an approximation [as was thought by Grigoliuk and
Chulkov (1966)], but an exact result, which, nevertheless, yields a simplification of the
problem, entailing the reduction of the order of governing equations from 10 to eight and
correspondingly, of the number of BCs to be fulfilled at cach edge from five to four.

As usual, the imperfection is assumed to be of the same shape as the deflection mode.
This statement is bascd on the conclusion (evidently valid when the load carrying capacity
of the structure is governed by a limit point) that this sclection would yield the most critical
effect (Seide, 1974). It could casily be shown that the representations for u; and i,

{u,(x,)} = {f""} sin A, sin g, %2, A, =mn/l,, u, = nn/l,, (25)

ﬁ](x,)

fulfill the out-of-plane BCs exactly. The in-plane BCs will also be satisfied on an average.
The same is true for the out-of-plane BCs, namely (23),, and (24), ., where the stretching
quantities intervene coupled with the bending oncs. To this end, the potential function Fis
represented as:

F(x,) = Fi(x) = 32 Ly + (v ) Ly). (26)

Here F\(= F,(x,)) is a particular solution of ¢cqn (21), [determined in conjunction with
(25)] while L, and L, denote the normal edge loads (considered positive in compression).
By fulfilling the conditions related to the function £, [see Librescu (1975) and Librescu
and Stein (1990a, b)), L, and L, acquire the meaning of average in-plane normal edge loads.
In the case of the panel loaded in the direction of the x;-coordinate only, the remaining
edges being unloaded and immovable [that is of the type (b)]. the condition for the
immovable edges x, = 0,/, may be expressed in an average sense, which yields:

1
J J- {(54‘5)1'-.“'*'51:.22*‘(54‘7— D(us,)?
Q (1]

+5A‘7[(“1.|)2+2“1.1173.1 + 20 2ty 3]+ bastty —uystty 2 pdyy dyy = 0. (27)

This equation, considered in conjunction with eqn (26), determines the fictitious average
load L, for which the edges x, = 0,/ remain immovablc.
For the present case, F,(x,) is given by :

Fi(x;) = A,cos 24, x,+ A, cos 2u,x,+ A, cos 24,,X, oS 2p4, X2+ A sin 4,,x, sin @,x,, (28)
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where

ASon+2mfl, i=1,23, and A,= A fpm 29

while 4, (i = 1.4) are coefficients displayed in the Appendix. Galerkin's procedure applied
to eqn (21), (consisting of the substitution of u;, i, and F expressed respectively by (25),
(26) and (28) in eqn (21), followed by its multiplication by sin 4,x, sin y4,x, and integration
of the obtained equation over the panel area) yields the equation governing the postbuckling
behavior of laminated composite curved panels subjected to biaxial compressive edge loads:

(L 22+ Lot Sun+ fon) QUL 2+ Lot Soun + fom)

- o~ = 16
+Q(Lt+L:)(fm+fm)ﬂ34& il (an +bz*L AT
= D(AL+ 1) foum +2(fin+2fm/‘m)(fm + S 2 i3 (A + 4,)

32 A4

X [Al)m” +A‘;mﬂn +A /1,,,}!,, +A2'1mun]
- ‘—-{_‘Q (/maun +.un m)Amfnm(fmn""jmrI)

+ 3 = M 7 Hn | om
Ilv (fmn menfmn [ Z-?Alz: An X

L
A

FRRT I
(fmn+2fmnfmu)[ AJ;—.?A‘}I_]A"
16 . 7 A} -
+Q{§Tl-l—z(fmn+2fmnfmn)‘43[2:bll+;:bn]An

‘62 3
31, Unm “fmrsfmn} 44;“"'!721"}"4422 b it A’:

- ) 16
"{"A-t(.“:bl 1+ 4::”22)/;'"1 +(bl 1 +b22) l:gl 1 AJ’mﬂnAmUmn“'z/‘mnjmn)
+ ‘34;'51.“5_;:»:”]} +;{4fmn(b! 1#3‘*'[)33;.3,), (m N n) = (19 M; W)- (30)

In egn (30)
z 1 if m=2p—1 and n=2r-1
m o Amlp~ -
A =45 0 otherwise ’ Gla)

the sign Z indicates that there is no summation over the indices m and n, while

man

B+C M
Q——-S,-‘-*-é,, 5" (31b)

denotes a reduced stiffness parameter incorporating transverse shear flexibility effect.
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20
1,7R,%0, 1/Ry20.5
— e /R 13/Ry20
{1,/h=10}
18} ! /]
oLt ,//d
Z
12} /G510 7
7
T £/6'+30 i
4
a-
4
o ) STE/G'50 .
0O 0S5 10 15 20 25 30
t/h

Fig. 1. Comparison of the postbuckling behavior of flat and circular cylindrical perfect panels for
transverse shear-deformable and infinitely rigid in transverse shear theories. The case of free movable
edges of uniaxial compression (L, = 0) as well as E/E" = 5, 3, = §,, = | were considercd.

The obtained equation expressing in an explicit form the load-transversal deflection
dependence is used to investigate the postbuckling behavior of curved panels. A non-
dimensional form of it could be obtained by paralleling the procedure developed in the
report by Nemeth (1991). :

Equation (30) and its immovable counterpart could be reduced to a generic form as:

L)) = 1+0,0+(,0% (32)

The left-hund side member of (32) expresses the ratio of the edge applied load to the
buckling load of the associated perfect panel; d(= f/h) is the amplitude of deflection of
the buckled mode while {, and {, are coefficients (referred to as Koiter’s postbuckling
parameters) which in the present case incorporate the effects of transverse shear defor-
mation, geometry of the panel, type of loading, character of the in-plane boundary

20
1,/R,%0, [/R3%0.5
— e 1, /Ry=13/Ry*0
(£,7h=20)

16 ! %

12}
bd X ]
L £/6'«30+

o L : N " L
0 0.8 1.0 1.8 20 2.5 3.0

t/h

Fig. 2. Comparison of the postbuckling behavior of flat and circular cylindrical shell perfect panels
for transverse shear-deformable and infinitely rigid in transverse shear theories. The case of free
movable edges of uniaxial compression (L, = 0) as well as E/E’ = 5, 8, = J, = | were considered.
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Fig. 3. Influence of the curvature ratio and transverse shear flexibility on the postbuckling behavior
of geometrically perfect circular cylindrical panels with free movable edges in uniaxial compression
(L:=0). (41 = 0.0).

conditions, ctc. The sign of the cocfficient {, essentially determines the imperfection sen-
sitivity characteristics of curved pancls.

Since for a flat pancl (Librescu and Stein, 1988, 1990a) {, =0 and ¢, > 0. L, /(L,).
results in values higher than unity, thus predicting that the perfect and imperfect flat panels
can support loads in excess of the buckling load. This behavior is referred to as imperfection-
insensitive. On the other hand, for shallow shells {, # 0 and their postbuckling behavior
could be sensitive or insensitive to imperfections, depending on whether {, <0 or {, > 0,
respectively. In the former case £,/(L,). is less than unity, thus resulting in a reduction of
the load-carrying capacity as compared to the perfect shell counterpart, while in the latter
case, the opposite situation takes place. The equation of the type (32) was obtained and
studied, e.g. in Koiter (1967a,b), Budiansky (1974), Scide (1974), Elishakoff (1980) and
Birman (1990) in order to obtain information concerning the sensitivity to geometric
imperfections of the load-bearing capacity of structures in the postbuckling range.

NUMERICAL ILLUSTRATIONS

The equation obtained, governing the postbuckling, determines in closed form the
behavior subsequent to the onset of the buckling of laminated composite doubly-curved
compressed panels. The numerical iflustrations concern the cases of single and three layered
composite shallow curved panels. For the latter case, two types of composite panels labelled
as Case | and Case 2 are considered. Being the same as the ones used in the paper by
Librescu and Stein (19904, b), their characteristics will not be displayed here. It is assumed
that the mid-layer of the three-layered plate is two times thicker than the external ones
(implying that h /A (= hsy/h) = 0.5 and heo /h = 0.25). (See Fig. 16.)

It should be emphasized that in accordance with their characteristics within Case 1,
the face-layers exhibit a higher flexibility in transverse shear than the core layer, while
within Casc 2 the opposite feature takes place. Throughout the numerical examples the case
of curved and flat panels having a square projection on I1 (/; = /, = /) was considered.

Within the numerical illustrations, L, (= L,/}/rD) denotes the non-dimensional uni-
axial compressive load while 8(= f/h) and 8,(= f/h) denote the non-dimensional central
deflection and initial geometric imperfection of the panel, respectively. In Fig. (11),
Lg(= L,/L,) defines the compressive edge load ratio, where Lz = 0 corresponds to the case
of the uniaxial compressive load in the x-direction. L, < 0 corresponds to the simultaneous
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Fig. 4. The influence of geometric imperfections and transverse shear flexibility on the postbuckling
behavior of three-layered circular cylindrical panels with free movable edges in uniaxial compression
(£, =0), (Case 1).

consideration of compressive (in thc x,-direction) and tensile (in the x,-direction) edge
loads.

CONCLUSIONS

A shear-deformable theory of geomcetrically nonlincar composite double-curved shal-
low shells symmetrically composed of transversely-isotropic matcerial layers incorporating
the effect of unavoidable gecometric imperfections was developed. The associated governing
equations have been recast in a form representing a generalization of some previous results
obtained by Librescu (1975) and Reissner (1986) as well as of von Karman-Mushtari
classical large deflection theory of geometrically perfect shallow shells. This theory was

12 —
———— °. -
— — — 3,s03 Hi7h=20
10 |[Cose2
1,/R,20, £1/Ry207S
8

FSOT{K2s2/3)

2r
/ HSDT(3,°3, 1)
N
G0 05 10 15 20 25 30
3+3,

Fig. 5. Comparison of the classical FSDT and HSDT in the prediction of the postbucklmg behavior
of three-layered circular cylindrical panels with free movable edges in uniaxial compression (L, = 0),
(Case 2).
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Fig. 6. The influence of initial imperfections and of transverse shear ﬂexlblllly on the postbuckling
behavior of three-layered circular cylindrical panels in uniaxial compression (£; = 0). The edges
x, = 0,/, are considered immovable.

uscd to determine the postbuckling behavior of such structures. The obtained numerical
results reveal that:

(1) The increase in the buckling loads of curves structures, as compared to their flat
counterparts is paid by a deterioration of their behavior in the postbuckling range. In this
sense, Figs -3 reveal that, in contrast to the flat panels which feature a stable postbuckling
hehavior, the curved pancls are characterized by an unstable behavior, As the curvature of
cylindrical panels diminishes, an improvement in the postbuckling behavior becomes evident
(Fig. 3). This behavior is valid for both rigid in transverse shear [see Zhang and Matthews
(1985) and Chia (1990)] and shear-deformable panels. Moreover, with the increase in the
thickness ratio, the curved pancls are more sensitive, from the postbuckling behavior
point of view, to the transverse shear flexibility effect than their rigid in transverse shear
counterparts (Figs | and 2).

—CLT
— —— HSDT

Movable edges
£, /R »-0.05 ,£,/R,*0.5
1, /£,°1,4,/h*20

80%-C.1

Fig. 7. The influence of positive and negative geomeric lmpcrfecuons and of transverse shear
flexibility on the postbuckling behavior in uniaxial compression (L, = 0) of doubly-curved panels of
negative Gaussian curvature. The case of movable edges, £/G’ = 30 and E/E” = § was considered.
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Fig. 8. The influence of geometric imperfections (positive and negative) and of transverse shear
flexibility on the postbuckling behavior of doubly-curved shallow panels of negative Gaussiun
curvature, Within thiscase, L, =0: E/G' =30, E E' = 5.

(b) In the case of circular cylindrical panels with free movable edges, in contrast to
their flat counterparts [see Librescu and Stein (1990a.b)], initial positive imperfections have
a deleterious effect upon their maximum load-carrying capability (Figs 4 and 5).

(¢) For the circular cylindrical panels with free movable edges, the reduction in the
load-carrying capability becomes more severe with the increase in the transverse shear
flexibility. However, when the pancl is thin, its influence on the load-carrying capability
becomes almost insignificant.

(d) The geometrically perfect circular cylindrical pancls with free movable cdges sub-
jected to compresssive loads characterized by L, < 0, exhibit a postbuckling behavior
similar to that of an imperfect panel (Fig. 11). The same figure reveals that in the case of
immovable edges, the effect of the transverse shear flexibility beomes immaterial. As Fig.
6 reveals, this trend remains valid in the case of small gcometric imperfections. However,
with their increase, this trend changes. In fact, Fig. 6 shows that for J, = 0.25, significant

Immovable
';';'_'}Movublo‘ -La®0
LCLT & HSDT
8 -!n/R,'O,[z/RfO
J|/lz'l,l|/h'20 Lg*0
30*0 f/‘/
6F
f “\
|
LR
ar [/ P
2r
o ;4 L
-2 -1 [o} | 2
3

Fig. 9. The influence of bi-axial in-plane edge loads (characterized by L, < 0) and of the character
of in-plane boundary conditions (movable and immovable) on the postbuckling of perfect circular
cylindrical panels. The comparison includes also CLT and HSDT. Here £/G” = 30, E/E" = 0.
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Fig. 10. The influence of the sign of the Gaussian curvature and of transverse shear flexibility on
the postbuckling of perfect curved panels. Here E/G’ = 30, E/E" =5, L, =0.

differences in the postbuckling behavior of three-layered circular cylindrical panels (Case
1 and Case 2) occur. In this casc, the results reveal that the cylindrical panel whose core
layer is more shear deformable than the face layers (Case 2) behaves better from the
postbuckling behavior point of view than its opposite counterpart (Case 1). Moreover, the
circular cylindrical pancls whose layers are rigid in transverse shear behave better than their
shear deformable counterparts (Case | and Casc 2).

(¢) The curved panels of non-zero (positive or negative) Gaussian curvature with free
movable edges behave, in the postbuckling range, like their circular cylindrical counterparts,
exhibiting initial geometric imperfections (Figs 7 and 8).

(f) The negative imperfections have a beneficial effect upon the load-carrying capacity
of curved panels of zero and non-zero Gaussian curvatures (Figs 7-10).

(g) In contrast to the case of flat pancls where the classical Kirchhoffean model provides
results overestimating the true predictions of the carried compressive loads [see Librescu
and Stein (1988, 1990a, b) and Stein er ¢f. (1990)], in the case of curved panels, this trend

Immovable sdges
HSOT (3,20,34*1)

ru

80'0.3

\ ( lao-o.s

-2 -1 0 | 2
3+ 80

Fig. 11. Postbuckling behavior of shear deformable circular cylindrical panets with immovable
edges, subjected to uniaxial compressive loads (L, = 0) and exhibiting positive and negative initial
geometric imperfections. Here [,/R, = 0. [,/R, = 0.5, h/l = 0.005, E/G" = 50 E/E’ = 5.

£ 58 2778
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Fig. 12. The postbuckling behavior of shear deformable and rigid in transverse shear circular
cylindrical perfect panels (//R, = 0. [/R; = 0.5) having free movable and immovable edges. Here
L.=0:l/h=20.EG =3 EE =5

is not always evident. Indeed there are cases where the results are strongly aflected by the
sign of geometric imperfections. the sign of the Gaussian curvature, the character of in-
plane boundary conditions (Figs 6, 7, 11-13) in the scnse that, in many such cases, the
classical and shear-deformable theories give the same (or almost the same) results in the
postbuckling range.

(h) Before drawing any conclusions about the results displayed in Figs 14 and 15, it is
notcworthy (sce in this scnse Figs 4, 6, 10, 1) that the postbuckling behavior of geome-
trically imperfect circular cylindrical panels could be characterized : (i) either by a limit
load (denoted by (£,,), followed by a snap-through), or (ii) by a monotonous, nonlincar
increase in the load-carrying capability. The curves in Figs 14 and 15 give a measure of the
sensitivity of limit loads to the initial geometric imperfections. These figures reveal that the
increase in transverse shear flexibility is accompanied by an increase in the susceptibility to
the former postbuckling behavior.

25
Immovable
— — Movabie
HSOT
20+
\
15F \\
T, \\
0}
Zao'o
- 35°0.2
s | 3 0.2 /g 84°0.4
P —
—
o L 1
-2 -1 [o] ! 2
3+34

Fig. 13. The influence of the positive and negative imperfections on the postbuckling behavior
of shear-deformable circular cylindrical panels having free movable and immovable boundary
conditions. Here L; = 0, //R, =0 /R, = 0.5:'"h =20. E/G" = 30. E[E’ = 5.
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Fig. 14. Variation of the load parameter £3,(=(Z,),/(£,,).} with the normalized imperfection

amplitude 8,(= fu/h) for the two cases of three-layered circular cylindrical panels with free movable

edges. The parts which do not appear in the graph correspond to the postbuckling behavior where
the load bearing capability of the structure increases monotonously with 6+ 4d,. Here Ly, = 0.

(i) For the case of single-layered circular cylindrical panels, the FSDT with K2 = 5/6
provides results in excellent agreement for both the bifurcation and postbuckling responses
with its HSDT counterparts. However, in the case of composite laminates, K? = 2/3 appears
to be a more reliable shear correction factor than K* = 5/6. The same results were revealed
to be valid also in the case of composite flat panels (Librescu and Stein, 1988, 1991).

One last remark concerns the trend occurring in the deep postbuckling range, where
the curves associated with the perfect curved panels instead of becoming very close to their
imperfect counterparts are intersected by them (e.g. Figs 4 and 5). A similar trend appears
in the results obtained by Vol'mir (1967). As was revealed (Souza, 1990), this trend is a
result of the small strains and moderately small rotations approximation [eqn (9)], used in
this paper. The employment of a more general relationship, based on the small and moderate
rotation approximation {developed by Librescu (1982), Librescu and Schmidt (1988) and
Dennis and Palazotto (1990)], would definitely modify this trend. This statement was checked

o CL.
— =—— HSOT

LOF  [E/E'sS, 1/h=20,1/R,20,4,/R,=075]

eX

~
Ly 06
E/G'10

N
AN .
o.a} \\\\ E/G =30
~ Ny S E/G'*S0
S~
~ —~—
Q.24+ —~—— —
o‘c i i 2
00 0.2 0.4 06 0.8
3

Fig. 15. Variation of the load parameter L?, vs d, for a relatively thick circular cylindrical panet.
The edges are assumed to be free movable and L; = 0.
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AXs3

Fig. 16. Geometry of the cross-section of @ composite laminated curved panel.

within a simplc but comprehensive model (Souza, 1987) which succeeds in simulating the
two geometrically nonlinear theories mentioned above.
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APPENDIX
The expressions of the rigidity ¥** intervening in eqns (17):
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The expressions of the coeflicients A, (i = 1.4) intervening in the eqns (28) and (29):
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